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SUMMARY 

A new method is presented for the solution of free-boundary problems using Lagrangian finite element 
approximations defined on locally refined grids. The formulation allows for direct transition from coarse to  
fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness 
matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in 
the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh 
refinement is combined with recently developed mapping methods and Newton’s method to form an efficient 
algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of 
cellular interfacial microstructure during directional solidification of a binary alloy. 
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1. INTRODUCTION 

Free-boundary problems involve both unknown field variables and unknown boundary shapes. 
In many cases the length scales and geometry of the free surface require more refined discretiz- 
ation along the surface than what is needed for resolution of field variables in the bulk of the 
domain. Examples of such cases come from a variety of physical problems such as viscous 
free-surface  flow^"^ and microstructure formation during s~lidification.~ - Many times for 
adequate resolution of this problem, more computational nodes are needed along the interface 
than in directions parallel to, but far from the interface. In the context of the finite element 
method, this requirement poses the problem of transition from a coarse to a fine grid. Various 
methods have been proposed for adaptive grid refinement that take into account the continuity 
and accuracy requirements of the finite element method.6-9 The purpose of this paper is not to 
review these methods, but rather to report on a discretization strategy not applied before in 
free-boundary problems. This discretization strategy combined with domain mapping techniques 
specially developed for free-boundary problems5 leads to a powerful methodology for treating 
efficiently a number of these problems. 

The present study builds on our previous work,’ where a mapping was developed for the 
solution of free-boundary problems and applied to the calculation of highly deformed melt/solid 
interfaces that arise in the analysis of solidification microstructure formed during alloy solidifi- 
cation. This mapping transforms the solidification model from the physical domain to a computa- 
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tional domain where the unknown interface coincides with a co-ordinate line. The solidification 
model and the mapping equations are discretized by Galerkin finite element method applied on 
the transformed domain using a conforming grid of quadrilateral elements. The discrete non- 
linear equations are solved by Newton’s method. While the combination of domain mapping and 
finite element/Newton methods provides a robust algorithm for solution of free-boundary 
problems at high boundary deformations, the discretization of the transformed domain used in 
Reference 5 was too simplistic to provide for consistent refinement for the field variables and the 
interface shape. These limitations are exemplified in Figures 1 and 2, where typical results are 
shown for the directional solidification of a binary alloy. 

P=0.37 P=0.43 
Figure 1. Transition to a deep solidification cell for increasing dimensionless solidification rate P. The computational grid 

is shown mapped back to the physical space. Here the interface is shown as a thicker co-ordinate line 
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In Figure 1 the evolution of a deep solidification cell is shown for increasing dimensionless 
solidification rate. As the cellular microstructure becomes deeper, the arclength at the interface 
increases, resulting in poor refinement of the interface shape and the unknown fields around the 
interface . It is clear that a significant increase of the discretization is needed locally around the 
interface. A less-deformed interface is shown in Figure 2 together with the corresponding 
concentration field. The interface shape involves length scales finer than the concentration field. 
The conforming discretization used in Figure 2 over-refines the approximation for the concentra- 
tion field in the melt and solid, in order to achieve acceptable resolution at the interface. Again, 
local refinement is needed close to the interface. 

In this paper we focus on the problem of local refinement around a free interface in the context 
of the finite element method. The goal of local refinement is to allow for a transition from a small 
number of elements away from the interface to large numbers of elements close to the interface. 
Continuity requirements for standard conforming finite elements" allow elements to neighbour 
with only one element per side. Under this restriction, local refinement is only possible through 
the use of special transition layers of elements between the regions of low and high refinement. 
Two common examples6 are shown in Figures 3(a) and 3(b). In Figure 3(a), a layer of triangular 
elements is used to allow for the transition that doubles the number of elements. This method 
requires both the creation of an intermediate zone and the use of basis functions defined on 
triangular elements, in addition to the original quadrilateral bases. The second approach is shown 
in Figure 3(b) and involves only quadrilateral elements, but again requires the construction of 
a special intermediate zone between the regions with different refinement. 

Figure 2. Shallow cellular structure arising in directional solidification. (a) computational grid (the interface is shown as 
a thicker co-ordinate line); (b) iso-concentration contours for concentration of solute 
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Figure 3. Transition from a coarse to a refined grid of quadrilaterals. (a) through a transition layer using triangles; 
(b) through a transition layer involving quadrilaterlals only; (c) direct transition 

Direct transition from a coarse to a fine grid, as shown in Figure 3(c), is a more attractive 
possibility, especially for automatic multilevel refinement of arbitrarily shaped parts of a com- 
putational domain. Nevertheless, this transition clearly violates the continuity requirements of 
the standard finite element methods. One approach to accommodate grids such as in Figure 3(c) 
is to use non-conforming elements, where approximations are allowed with simple discontinuities 
of derivatives of order (m- 1) or lower for boundary value problems of order 2m.11712 However, 
non-conforming elements are convergent approximations only under special conditions, e.g. 
fulfilment of the patching test," and cannot be extended to arbitrary geometries and basis 

In fact, we are not aware of any application of the classic patching test to the case 
of Figure 3(c). An alternative method is to use weak constraints that account for continuity in the 
context of hybrid finite element methods. This approach, while being general, introduces new 
contributions to the error estimates and requires considerable programming if it is to be 
incorporated to existing standard finite element codes. 

The approach proposed in this study is the direct transition from coarse to fine discretizations, 
but without violating any requirements for conforming finite element approximations. This is 
achieved by specially treating the approximations at the transition in element number. This 
method has been used independently in solid mechanics by Gupta7 and recently in aerodynamics 
by Young et a/.' in the context of linear and trilinear finite elements, respectively. Here we present 
the method for general Lagrange finite element basis functions. Also, similar ideas have been used 
in the context of the finite volume method by Reggio et a1.,15 where nodes on the transition 
boundary arc treated so that the conservation principles involved in the finite volume method are 
not violated. 

The proposed method for local refinement is applied to the calculation of microstructure from 
a model of directional solidification; the solutal model and mapping equations for directional 
solidification of a binary alloy are presented in Section 2. The local refinement method is 
presented in Section 3 and its advantages and limitations are discussed. Sample results for 
directional solidification obtained using local refinement are presented in Section 4 and are 
compared with calculations without local refinement. 

2. THE SOLUTAL/MAPPING EQUATIONS 

The solutal model used for directional solidification of a binary alloy together with the mapping 
equations used to treat the unknown shape of the domain are described in detail in Reference 5. 
Here we briefly describe the physical system and summarize the equations and boundary 
conditions. 
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Y 

y=-I, 
X x=L 

aD1 
Figure 4. The two-dimensional domain of thin-film directional solidification 

A configuration of the physical system is shown in Figure 4, where a thin film of a binary alloy 
is transported with constant veliocity through an externally imposed temperature gradient. As 
the melt solidifies, solute is rejected from the solid to  the melt resulting in a high solute 
concentration in a melt layer adjacent to the interface. Higher solute concentrations lead to 
higher melting points and if the melting point in the solute-enriched layer is higher than the 
temperature, then irregular freezing occurs leading to a non-planar melt/solid interface. This 
instability of the planar solidification front was described originally by Tiller et and the 
relevant linear stability analysis was performed later by Mullins and Sekerka.I7 Our goal is the 
study of the non-planar interface morphologies that evolve after the instability of the planar 
interface. 

The solutal model is a good continuum approximation of the physics of the formation of 
interfacial microstructure in directional solidification. Here the latent heat of solidification is 
assumed negligible, the thermal diffusivities in the melt and the solid are assumed equal, and 
convection of heat in melt and solid is neglected. Under these assumptions, the thermal field is 
decoupled from the interface position and is considered to have constant linear profile, 
T= 1 + Gy.  This equation and the others appearing below are written in dimensionless variables, 
where lengths are scaled with a characteristic length Lo, time with the diffusion time zd =Li/G$,,,, 
temperature with the melting temperature of pure material T j ,  and concentration with the bulk 
concentration of the alloy c, . Quantities referring to the melt and solid phases are denoted by the 
subscripts m and s, respectively. The unknowns in the solutal model are the solute concentration 
in the solid and the melt and the interface shape. 

The solute conservation equations in the melt and the solid are 

-_ acm-v’c,+ P(i$-Vc,), 
a t  
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%= R,V2c, + P(&, - VC,) 
at 

where R , ~ 9 , / 9 ~  is the ratio of solutal diffusivity in the solid to the value in the melt, and 
P = Lo V / 9 ,  is the solutal Peclet number expressing the dimensionless solidification rate in the 
y-direction. The solute balance across the interface is 

where F ( x ,  y, t )  = 0 is the parametrization of the interface and fi = [ VF/I V F 1 IF = o  is the normal 
vector to the interface. Local thermodynamic equilibrium is assumed at the interface in terms of 
a partition coefficient k, 

c,=kc, at dD1, (4) 
and the Gibbs-Thomson equation is used to account for the effects of the solute concentration 
and the interface curvature on the melting point 

T = l + G y = l + m c m + 2 % ~  at aD,, ( 5 )  

where m is the dimensionless slope of the liquidus line of the phase diagram, 2% = - V, * A is the 
interface curvature and r = f /Lo  is the dimensionless capillary constant. The boundary condi- 
tions for the solute concentration at the far field are 

&;VC,=P(l -c,) at a&, (4) 

&;Vc,=O at a D , .  (7) 

&;Vc,=O, &;Vc,=O at d D 3 , a D 4 ,  (8) 

+ = O  at do3, aD4, (9) 

Reflective boundary conditions are assumed at the domain sides: 

where + is the angle formed by the unit vector tangent to the interface and pointing in the 
direction of increasing interfacial arclength and the unit vector C,. 

The equations (1H9) are solved simultaneously with the mapping equations that extend to 
both the solid and melt phases and transform the regions with the free boundary in physical space 
to a fixed domain in co-ordinates (5, q). The mapping equations developed in Reference 5 are 

v *(a * V?)=f(r7)9 (10) 

where 

Equation (10) is the heat equation that distributes the t-co-ordinate lines (11 =constant), so that 
they follow the interface shape as close as possibly. Equation (10) results in y-co-ordinate lines 
that pass through the <-co-ordinate lines as smoothly and orthogonally as possible. The interface 
always coincides with the (-axis and the ( co-ordinate is distributed uniformly with respect to 
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arclength along this axis, 

Orthogonality conditions are assumed on the other domain boundaries: 

&,,.V(=O, q= 1, -1 at 8Dl,  do2, (13) 

$;Vq=O, { = O ,  1 at 2 D 3 ,  dD4. (14) 

The mapping of the physical to the computational domain is improved by decoupling 
the mapping of the domain around the interface, q 1  ~q < q 2 ,  from that of the far-field domain, 
-1 < q - - < y ~ ~  and q 2 - < q 5 1 ,  where q = q 1  and q=qz  are two transformed co-ordinate lines 
above and below the interface, as shown in Figures 1 and 7. The mapping equations in the inner 
region of the domain, q l  ~q sqZ, are solved independently with boundary conditions 

&,,-V(=O at q = q l ,  q z .  

The mapping of the far field is coupled to the mapping of the inner region by using the results 
from the inner region along the axes q = q1 and q = q 2  as essential conditions for the solution of 
the mapping equations in the regions - 1 I q 5 ql  and q2 I q  5 1, respectively. In addition, the 
t-co-ordinate lines are stretched in the outer domain, as shown in Figures 1 and 2, by changing 
the scaling of the tensor a in equation (10) to 

The Galerkin finite element is used to discretize the boundary value problem given by 
equations (lH14) using bilinear approximations for the mapping unknowns (x, y) and biquad- 
ratic for the concentration field defined over the transformed domain O < t <  1 and - 1 <q < 1; 
this weak formulation is described in detail in Reference 5 and is not repeated here. It will be 
apparent in the next section that local refinement does not affect the weak formulation derived in 
Reference 5. 

3. LOCAL REFINEMENT USING ONE-TO-TWO ELEMENT TRANSITIONS 

In this section we develop a Lagrangian finite element approximation to an arbitrary field 
variable u(x, y )  using locally refined quadrilateral meshes. We consider the collection of elements 
shown in Figure 5, where a transition from element e3  to elements e l  and e2  is shown. We refer to 
a boundary of such an one-to-two element transition as a transition boundary. The characteristic 
of a transition boundary is that it contains two sets of nodes. The first set of nodes are boundary 
nodes of the coarse element lying on one side of the transition boundary and the second set 
consists of the boundary nodes of the two refined elements lying on the other side of the transition 
boundary. We refer to the first set of nodes as regular nodes and to the second set as pseudonodes. 
The discussion that follows assumes that finite element approximations in each element are 
constructed using p-order Lagrangian basis functions defined at nodes in each element. These 
nodes are shown schematically in Figure 5 for bilinear approximations. 
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K L M N 

A B C D E 

Figure 5. Example of local refinement through element splitting 

Let { n i ,  n i ,  n\>, i =  1, ..., m, be the nodes oftheelements e l ,  e2 and e3 along the boundaries GH,  
H I  and GI,  respectively. Then { ~ f  , n i }  are the pseudonodes and In;} are the regular nodes of the 
transition boundary GI. Also let { $ J )  be the elemental basisfunction corresponding to node n and 
defined over element ej . Each basis function $7 is non-zero at node n and is zero at all other nodes 
of elements e j .  

The problem of continuity across the transition boundary comes from the fact that the 
elemental basis functions {$;;} defined over the coarse element and corresponding to the regular 
nodes cannot be extended to the other side of the transition boundary to the elemental basis 
functions ($1; } and {$;;>, which correspond to the pseudonodes. This discontinuity results in 
two limitations: (i) the continuity of the solution is not guaranteed for any arbitrary set of nodal 
values of the unknown fields and (ii) global basisfunctions CD cannot be formed at the transition 
boundaries by simply patching together elemental bases functions that have the continuity 
appropriate for second-order elliptic problems, i.e. @(x) E 2 ' (Q) = {CD, la[@' + { V@ 1'1 dQ < oc >. 

This problem is alleviated by enforcing the continuity of the solution across the transition 
boundary GI by introducing essential conditions for the values of the unknowns at the pseudo- 
nodes, 

where un is the value of the unknown field u at the node n and the weightings w: are given by the 
values at the pseudonodes 1 of the shape functions corresponding to the regular nodes n, i.e. 

~Zi=$$(n: ) ,  ~:1=$3(n\),  i= l ,  ..., m, j=1 ,  ..., m. (17) 
The conditions (15) and (16) remove the pseudonodes from the finite element formulation leaving 
only the regular nodes along the transition boundaries. The latter set of nodes is introduced into 
the finite element formulation by defining new global basis functions (On;} c H'(L2) on the nodes 
{ T I ; } .  This is done by patching the elemental basis functions corresponding to a regular node of 
a transition boundary together with a weighted combination of the elemental basis functions 
corresponding to the pseudonodes of the transition boundary. The weighting coefficients used are 
the same ones used in the continuity constraints; see equation (17). For the example in Figure 5 ,  
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the basis functions of the regular nodes {n' j}  are 
m m 

where we assumed that the nodes n: and n? coincide with the points G and I ,  respectively. The 
definitions (18j420) of the global basis functions {on; 1 guarantees continuity and local support. 

Calculation of the various terms of the weak formulation of the Galerkin finite element method 
involves the calculation of integrals of the form 

where { x j }  are the components of the position vector. In standard finite elements, these integrals 
are estimated as an assembly of elemental integrals involving elemental basis functions. This 
element-by-element assembly can be extended to integrals involving basis functions of the form, 
equations (18)420). Using equations (18j420) to evaluate the integral I,; for a regular node 
n'j gives 

where 

m m 

Similar expressions are obtained for I f , x j .  
Based on these expressions, the proposed formulation is implemented in existing Lagrangian 

finite element codes with minimal changes. In particular, the formation of elemental stiffness 
matrices and residuals is not affected at  all. Changes are needed only at the loading of the 
elemental data to the global stiffness matrix and residual. This involves two steps for each 
pseudonode n: (i) the interpolation constraint step, where the residuals and stiffness entries 
corresponding to pseudonode n arc replaced by the constraints (15) and (16) and (ii) the 
redistribution step, where the elemental data corresponding to the pseudonode n are weighted, as 
shown in the summation terms in equations (22H24) and loaded to the global entries correspond- 
ing to the regular nodes of the transition boundary. 

The order of approximation over el and e2 is affected by the constraints (15) and (16). After 
equations (15) and (16) are applied, the elements el  and e2 are not regular but rather form 
a compound element which we refer to as el ,  2. The basis functions of the compound element are 
those of el and e 2 ,  except at  the transition boundary GI, where the basis functions are defined on 
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the nodes ni, i=  1, ... ,m, as dictated by equations (18)420). If the accuracy along a side of 
a regular element is O(h"), the accuracy along the transition boundary of the compound element 

is only B(h") instead of fi((h/2)"), as happens with the side BD of the compound element. In 
other words, the accuracy of approximation in the area eluez is between that of element e3  and 
the regular elements el and e2 alone. Of course, this reduced accuracy is restricted only to the finer 
elements adjacent to the transition boundary and does not extend to the refined regular elements 
adjacent to the side BD of e l ,  2 .  

The refinement procedure clearly allows the direct transition from a number of elements to 
twice as many. There are numerous possibilities for initializing and updating the numbering and 
the data structure of this refinement transition, depending on the solution method for the 
resulting non-linear algebraic equations and the machine architecture. According to this ap- 
proach, a uniform collection of elements is constructed and then elements in regions where 
refinement is needed are split repeatedly until the desired resolution is achieved. Similarly, 
elements in regions where a coarser grid is needed are coalesced from two to one. Both splitting 
and coalescence of elements are automatically performed so that only one-to-two element 
transitions are allowed. The numbering of elements and nodes remains arbitrary during grid 
generation and the next available integer is given to every new element, node, or unknown. The 
relationships between refined elements and their coarser ancestors are not stored as in other 
approaches.' 

A pathological case may arise during automatic multilevel local refinement if arbitrary 
transitions from one to two elements are allowed. This problem is exemplified in Figure 6 for 
bilinear elements where the element e,  contains pseudonode H and is split horizontally into 
elements and e4, while element e2 is not split. Following the method described above, a portion 
of the elemental data from and e4 corresponding to the pseudonode 0 must be loaded to node 
H ,  as dictated by equations (22)-(24). However, node H is also a pseudonode related to the 
transition boundary GI and, thus, all elemental contributions to this node have to be distributed 
to the regular nodes G and I ,  as described by equations (22)-(24). This results in transferring data 
from element e4 to nodes G and I of element e3, which is not adjacent to e4.  The situation 
becomes more complex if element e4 is required to be split horizontally. Implementation of such 

B C D B C D 
Figure 6. Splitting of element that already contains pseudonodes on the sides to be split. Such transitions while possible in 

principle are not allowed in this approach 
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transitions in mesh refinement requires very sophisticated data structures that are not justified by 
the additional improvement in refinement derived by introducing these element configurations. 
In the implementation applied here, such transitions are not allowed; we require for an element to 
be split, that all the nodes are regular along the two sides of the element involved in the 
subdivision. 

An example of automatic local refinement is shown in Figure 7 for a rectangular domain with 
0 5 x 1 2 and 0 y 5 1. Here refinement is done in levels; at each level a group of elements is split 
horizontally or vertically. In Figure 7, four levels of refinement, two vertical and two horizontal, 
have been applied in the square area defined by 0.2<x<07 and 0 2 5 ~ 1 0 . 7 .  Similarly, one 
vertical and one horizontal refinement levels have been applied to the circular area 
(x-2)’ + ( y -  1)’10.4; the same refinement has been repeated in the area with 
(x - 2)’ + ( y  - 1)2 I 0.8, achieving a spatially graded refinement towards the upper right corner of 
this domain. 

In the calculations of solidification microstructure described in this paper, local refinement is 
applied to both the bilinear and biquadratic elemental representations used for the mapping 
unknowns (x, y )  and concentration field, respectively. Newton’s method is used for the solution of 
the non-linear algebraic equations resulting from the finite element discretization5 of the sol- 
utal/mapping equations. The linear systems appearing at each Newton iteration are solved by 
direct LU factorization of the stiffness matrix using frontal storage techniques designed for 
a vector serial computer. The computational work required for the LU factorization is the 
dominant computational expense for these calculations and scales as W’N, where W is the 
bandwidth of the Jacobian matrix and N is the number of the unknowns.To achieve optimal 
performance the bandwidth of the Jacobian matrix must be minimized; this amounts to address- 
ing the elements in the frontal solver in a suitable order, which is found by implementing standard 
bandwidth minimization methods.IB In the application described here, the discretization is 
uniformly refined in the lateral direction (5) and the optimal numbering is intuitively found to be 
the one that scans all consecutive elements in the q-direction before scanning their neighbours in 
the lateral 5-direction. In fact, this numbering results in the same bandwidth for the stiffness 
matrix as the one that corresponds to the original unrefined grid. Because the bandwidth remains 
unaffected by the local refinement, the computational work involved in these calculations is 
proportional only to the number of degrees of freedoms introduced by each level of discretization. 

y= 1 

y=o 

x=o x=2 
Figure 7. Example of automatic multilevel local refinement. The construction of the mesh is described in the text 
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4. RESULTS 

The efficiency of the proposed method for local refinement is demonstrated here for solution of 
the solutal model and mapping equations for development of cellular interface morphologies in 
directional solidification. It is well known4* that the steady-state solutions of this problem 
present a very rich bifurcation structure. Here our goal is not to explore this non-linear solution 
structure, but rather to use some of the steady states as examples for local refinement. The system 
considered is the solidification of Pb-Sb alloy with material properties and operating parameters 
identical to those used in Reference 5. In Reference 5, we have calculated the structure of the 
primary solutions bifurcating from the planar interface state for increasing dimensionless solidifi- 
cation rate P. In those computations the lateral size of the domain was taken equal to the critical 
wavelength ,IG corresponding at the onset of the instability of the planar state. Here we follow 
a similar approach as we reconsider the two cases of Figures 1 and 2 involving deep and shallow 
solidification cells, respectively. 

Mesh refinement is performed in layers symmetric in the melt and solid around the interface 
and uniform in the lateral direction. Every level of refinement is characterized by an integer n, 
meaning that the elements in a layer n-element thick above and below the interface are vertically 
split so that the number of elements along the interface is doubled. Thus, a refined grid is 
characterized by the original uniform discretization together with a set of integers ni, i=  1, ... , m 
indicating the m consecutive levels of refinement, each defining a 2ni-element thick region. For 
example the grid shown in Figure 8(b) is a (20 x 55) grid with refinement (10,5). 

The first case considered is the case of a deep cell of Figure 1 corresponding to the primary 
bifurcation family with wavelength IJ4, which also is shown in the bifurcation diagram in 
Figure 13 of Reference 5. The calculations presented here are for a domain with length equal to 
I.,/8. In these calculations, we use uniform grids G1=(20, 55),  G2=(40, 55)  and G3 =(80, 55), and 
locally refined grids derive from G1 and G2. The performance of these discretizations for 
computing y-position of the bottom of the interfacial cell is compared relative to the more 
accurate value obtained using a finer uniform grid G4=(160, 55). The results are summarized in 
Table I where it is apparent that the accuracy of the calculated position of the bottom of the 
interface is affected by the total number of degrees-of-freedom representing the interface shape, 
rather than by the total number of degrees-of-freedom. For example, the grids G l a  and G2 have 
the same accuracy and same number of nodes on the interface, while the first grid involves only 
half the unknowns of the second. Also, grid, G le  achieves an order-of-magnitude higher accuracy 

Table I. Results for deep cell computed with various refinement 

Original (x, y) Local Degrees of Elements on Relative 
Grid discretization refinement freedom interface error 

G1 
G l a  
G l b  
G l c  
G l d  
Gle  
G2 
G2a 
G2b 
G3 

20 x 55 
20 x 55 
20 x 55 
20 x 55 
20 x 55 
20 x 55 
40x 55 
40 x 55 
40 x 55 
SOX 55 

0 
5 
5 , 5  

10 
10,lO 
10, 5 
0 
5 

10 
0 

5803 
6883 
8643 
7883 

11 643 
10 043 
11 383 
13 543 
15 543 
22 543 

20 
40 
80 
40 
80 
80 
40 
80 
80 
80 

5.5 x 10-2 
1.4 x lo-’ 

1.4 x 10F2 
3.8 10-3 

3-1 x 10-3 
3.2 x 10-3 

2.7 10-3 
2.7 x 10-3 
2.7 10-3 

1.3 x 
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1.5 

1 .o 

0.5 

0.0 

-0.5 
0.0 0.2 0.4 

(4 

1.5 

1 .o 

0.5 

0.0 

-0.5 
0.0 0.2 0.4 

(b) 
Figure 8. Uniform and locally refined mesh for a deep cell at P=049. Here the domain is shown truncated for 
-05$4’<1.5,  while the full computational domain used is - 1 . 5 ~ ~ ~ 3 . 5 .  The discretizations of (a) and (b) correspond 

to the grids GI and Gle of Table I, respectively. The interface is shown as a thicker co-ordinate line 

than the uniform grid G2, while using slightly fewer unknowns than in G2. The interface shape 
and the corresponding grids in the physical space are shown in Figures 8 and 9 for some of the 
discretizations described in Table I. The improvement of the approximation of the interface shape 
is apparent. 

The second case considered is the example of a shallow interface shape shown in Figure 2. This 
steady state belongs to a secondary bifurcating branch emanating from the primary solution with 
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(4 (b) (4 
Figure 9. Detail of the representation for the bottom of the deep cell. The descritizations used are (a) GI, (b) Glc, and 

(c) Gle of Table I. The interface is shown as a thicker co-ordinate line 

I 

P 

Figure 10. Bifurcation diagram showing the amplitudes of the primary solution with wavelength 1,/2 and the secondary 
soIution as a function of P in a domain with length &/2. Shapes of the interface are also shown. These results have been 

obtained using the discretization G6 of Table I1 

wavelength &/2, as shown in Figure 10. We study this secondary solution because the interface 
shape changes rapidly as P is increased, making local refinement critical for obtaining the correct 
interface shape at a given value of the growth rate. The computational domain used is &/2. The 
various refinements used are described in Table I1 and the results are depicted as bifurcation 
branches in Figure 11. Here the approximation error can be seen as the distance of the various 
solution branches from the solution branch that corresponds to the finest grid G6. From 
Figure 11, it is clear that refinement around the interface rather than the total number of un- 
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Table 11. Grids used in the calculation of the shallow cell 

Original (x, y) Local Degrees of Elements on 
interface Grid x-discretization refinement freedom 

G4 15 x40 0 3223 15 
G4a 15 x40 5 403 3 30 
G4b 15 x 40 8,s  6103 60 
G5 30 x 40 0 6283 30 
G5a 30 x 40 5 7903 60 
G6 60 x 40 0 12 403 60 

0.335 

P 
0.340 

Figure 11. Secondary bifurcation branch for various discretizations. The girds used are explained in Table I1 

knowns determines the accuracy of the solution. Thus, for a given accuracy, local refinement 
results in considerable computational savings. An example of a locally refined grid for this case is 
shown in Figure 12 together with a uniform grid with the same degrees of freedom along the 
interface. 

5. SUMMARY 

The calculations presented here show that local refinement around free surfaces is a powerful 
approach for increasing the accuracy of the solution of free-boundary problems without a signifi- 



842 K. TSIVERIOTIS AND R. A. BROWN 

Figure 12. Local mesh refinement near a shallow melt/solid interface: (a) uniform grid G6; (b) locally refined grid G4b 
listed in Table I1 are shown. The interface is shown as a thicker co-ordinate line. 

cant increase of the total number of unknowns. In the problem considered here, local refinement 
is uniform in the lateral direction so that it can accommodate for the large variety of interface 
shapes that appear in a given domain as the parameters change. However, for fixed or slightly 
changing domains, more sophisticated refinement can be incorporated, resulting in near optimal 
use of computational resources. 

Local refinement also can be very important in applications where the boundary conforming 
mapping is used simply for grid generation in a fixed domain. Usually in such cases, mapping 
should provide simultaneously for acceptable levels of smoothness, orthogonality and grid 
concentration,' resulting in very strict requirements to the mapping equations. An alternative to 
this traditional approach is to first account only for smoothness and orthogonality using some set 
of mapping equations and then impose any grid concentration requirements through local 
refinement of the resulting conforming grid. This approach relaxes the requirements on the 
mapping equations and adds more flexibility to the handling of the three important character- 
istics of the grid, i.e. smoothness, orthogonality and grid concentration. 
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